

Oscillator JTS75HC(V) · (VC)TCXO

- temp. compensated crystal oscillator, 7.0 x 5.0 mm
- low jitter Stratum 3 compliant TCXO / VCTCXO
- temperature range -40°C ~ +105°C available
- frequency stability of ± 50 ppb available
- ask for customized options

REACH compliant

GENERAL D	DATA			
ТҮРЕ		JTS75HC / JTS75HCV (HCMOS output)		
frequency range		9.60 ~ 50.0 MHz (see table 4 on next page)		
frequency tolerance / stability	at +25 °C (*1)	± 1.0 ppm max.		
	after 2x reflow (*2)	± 0.5 ppm max.		
Stubility	temperature (*3)	see table 1		
	supply voltage (*4)	\pm 0.1 ppm max. (at V _{DC} \pm 5%)		
	load change (*5)	\pm 0.1 ppm max. (at nom load \pm 5%)		
	aging first year (*6)	± 1.0 ppm max. (at +25 °C)		
	aging per day (*7)	± 10.0 ppb max.		
	stability (ADEV)	0.1 ppb / 0.2 ppb (stability = ±0.28 ppm)		
with $\tau = 1$ so	ec (typ. / max.)	0.2 ppb / 0.5 ppb (stabilities < ±0.28 ppm)		
holdover sta	ability (*8)	± 0.37 ppm max.		
free run fre	quency stability (*9)	± 4.6 ppm max.		
current consumption max.		10.0 mA		
supply volta	age V _{DC}	3.3 V (all ± 5%)		
tempera-	operating	see table 1		
ture	operable	-40 °C ~ +105 °C		
	storage	-55 °C ~ +105 °C		
output	rise/fall time max.	8 ns (10 % \leftrightarrow 90 % of $\rm V_{\rm DC})$		
	nominal load	15 pF		
	low / high level	0.4 V max. / V _{DC} - 0.4 V min.		
start-up time max.		3.0 ms		

TABLE 1: FREQUENCY STABILITY CODE						
frequency stability temperature code		F ± 0.28 ppm	H ± 0.20 ppm	G ± 0.10 ppm	J ± 0.05 ppm	
-30 °C ~ +75 °C	G	0	0	0	0	
-40 °C ~ +85 °C	K	0	0	0	0	
-40 °C ~ +105 °C	Р	0	0	0	0	

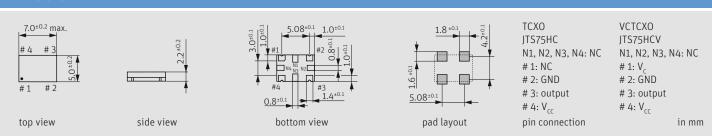
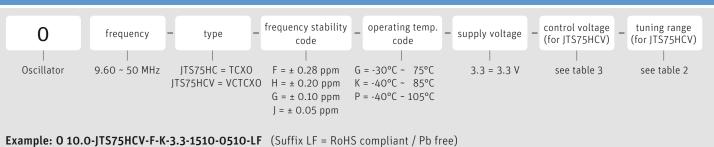

O available

TABLE 2: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD					
V _C frequency tuning range	code	minimal	maximal		
of JTS75HCV	05X0 ± 5.0 ppm		undefined		
table shows examples,	08X0	± 8.0 ppm	undefined		
ask for more options	0510	± 5.0 ppm	± 10.0 ppm		
	1015	± 10.0 ppm	± 15.0 ppm		


TABLE 3: VC CODING METHOD (EXAMPLES)					
V_c center voltage and V_c range	code	center of V _c	range of V _c		
	1616	1.65 V	± 1.65 V	$1.65 \text{ V} \pm 1.65 \text{ V}$ at V_{DC} = 3.3 V	
	1610	1.65 V	± 1.00 V	$1.65 \text{ V} \pm 1.00 \text{ V}$ at $\text{V}_{\text{DC}} = 3.3 \text{ V}$	
	1515	1.50 V	± 1.50 V	1.50 V \pm 1.50 V at $V_{DC} = 3.3 \text{ V}$	
	1510	1.50 V	± 1.00 V	1.50 V	$\pm 1.00 \text{ V at V}_{DC} = 3.3 \text{ V}$
V _c properties	input impedance of $V_{\rm c}$ min.			100 k0hm	
	$V_{\rm c}$ frequency tuning linearity max.			10 %	

For (*1) ~ (*9) please refer to definitions shown on the 2nd page of this datasheet

DIMENSIONS

ORDER INFORMATION

Oscillator JTS75HC(V) · Stratum 3 TCXO & VCTCXO

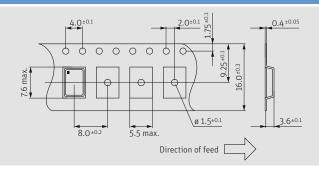
PHASE NOISE INFORMATION					
phase noise	at 10 Hz	-93 dBc/Hz typ.			
at f0 19.2 MHz,	at 100 Hz	-120 dBc/Hz typ.			
V _{DC} = 3.3 V	at 1 KHz	-145 dBc/Hz typ.			
@ +25 °C	at 10 KHz	-157 dBc/Hz typ.			
	at 100 KHz	-159 dBc/Hz typ.			

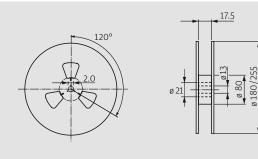
DEVELOPED FREQUENCIES					
all frequencies	10.0	12.80	13.0	16.320	16.3840
in MHz:	18.4320	19.20	19.440	20.0	25.0
	30.720	32.7680	38.880	40.0	50.0

at 100 kHz -139 abc/Hz typ.

- non-multiple packing units are only supplied taped / bulk
- moisture sensitivity: MSL 2

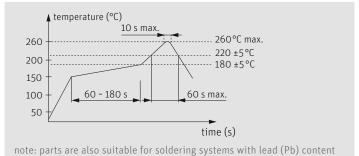
NOTE


- for best supply noise rejection, connect a capacitor of 100nF and a second capacitor of $10\mu F$ closely to the supply voltage pins
- a separate voltage supply rail ensures best phase noise
- keep digital or high frequency signals as far away from V_c pin as possible


DEFINITIONS

PACKAGING NOTE

- *1: Measured frequency observed with T_A =+25°C and C_L =15pF, at nominal V_{DC} and nominal center V_C (if applicable) within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: At specified reflow soldering profile, tested with T_A =+25 °C and C_L =15pF, at nominal V_{DC} and nominal center V_C (if applicable). At least 4 hours of static placement at room temperature is necessary after completion of 2 times reflow.
- *3: T_A varied in the specified operating temperature range, frequency variation is normalized to the middle point of whole frequency excursion, at nominal V_{DC} and nominal center V_C (if applicable), and at nominal output load, temperature variable speed less than 2°C per minute.
- *4: Frequency variation if V_{DC} is varied by \pm 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_{A} =+25 °C and nominal load.
- *5: Frequency variation if the load is varied by ± 5% of nominal load, frequency variation is normalized to frequency observed at nominal V_{DC}, nominal center V_C (if applicable), T_A=+25 °C and nominal load.
- *6: The maximum 1st-year frequency deviation from the ex-factory status. $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), $T_A = +25$ °C and nominal load. Normally, the largest frequency deviation occurs within the 1st year.
- *7: The maximum frequency deviation within 24 hours in a steady state. The initial status acquired at T_A =+25 °C, at nominal V_{DC} , nominal center V_C (if applicable), nominal load and after 1h of continuous operation.
- *8: The maximum frequency deviation within 24 hours including temperature variation. The initial status acquired at T_A =+25°C, at nominal V_{DC} , nominal center V_c (if applicable), nominal load and after 1h of continuous operation.
- *9: The maximum frequency deviation including stability vs. temperature, tolerance ex. factory, aging over 20 years, supply and load variation.


TAPING SPECIFICATION

in mn

REFLOW SOLDERING PROFILE

MARKING

internal code (optional) / frequency dot / internal code

note: for more information please contact Jauch

