

Oscillator JTS53HC(V) · (VC)TCXO

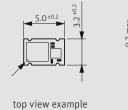
- temp. compensated crystal oscillator, 5.0 x 3.2 mm
- low jitter Stratum 3 compliant TCXO / VCTCXO
- temperature range -40°C ~ +105°C available
- frequency stability of ± 50 ppb available
- ask for customized options

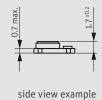
REACH compliant

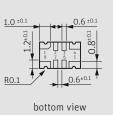
Conflict

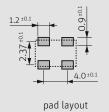
GENERAL DATA TYPE JTS53HC / JTS53HCV (HCMOS output) 9.60 ~ 50.0 MHz (see table 4 on next page) frequency range at +25 °C (*1) frequency ± 1.0 ppm max. tolerance / after 2x reflow (*2) ± 0.5 ppm max. stability temperature (*3) see table 1 \pm 0.1 ppm max. (at $V_{DC} \pm 5\%$) supply voltage (*4) load change (*5) ± 0.1 ppm max. (at nom load ± 5%) aging first year (*6) ± 1.0 ppm max. (at +25 °C) ± 20.0 ppb max. aging per day (*7) short term stability (ADEV) $0.1 \text{ ppb} / 0.2 \text{ ppb} \text{ (stability = } \pm 0.28 \text{ ppm)}$ with $\tau = 1 \sec (typ. / max.)$ 0.2 ppb / 0.5 ppb (stabilities < ±0.28 ppm) holdover stability (*8) ± 0.37 ppm max. free run frequency stability (*9) ± 4.6 ppm max. current consumption max. 10.0 mA max. supply voltage V_{nc} 3.3 V (all ± 5%) temperaoperating see table 1 ture -40 °C ~ +105 °C operable -55 °C ~ +105 °C storage 8ns (10% <-> 90% of V_{DC}) output rise/fall time max. nominal load 15 pF low / high level $0.4 \text{ V max.} / \text{V}_{\text{DC}} - 0.4 \text{ V min.}$ start-up time max. 3.0 ms

TABLE 1: FREQUENCY STABILITY CODE						
frequency stability temperature code		F H ± 0.28 ppm ± 0.20 ppm		G ± 0.10 ppm	J ± 0.05 ppm	
-30 °C ~ +75 °C	G	0	0	0	0	
-40 °C ~ +85 °C	K	0	0	0	0	
-40 °C ~ +105 °C	Р	0	0	0	\triangleright	

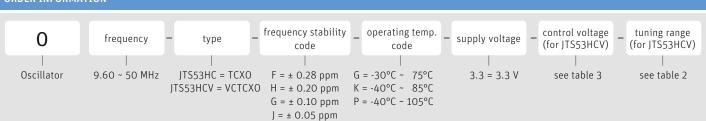

O available > ask if available


TABLE 2: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD				
V _C frequency tuning range	code	minimal	maximal	
of JTS53HCV	05X0	± 5.0 ppm	undefined	
table shows examples,	08X0	± 8.0 ppm	undefined	
ask for more options	0510	± 5.0 ppm	± 10.0 ppm	
	1015	± 10.0 ppm	± 15.0 ppm	


TABLE 3: VC CODING METHOD (EXAMPLES)						
V _c center voltage and V _c range	code	center of V _c	range of V _c			
	1616	1.65 V	± 1.65 V	$1.65 \text{ V} \pm 1.65 \text{ V}$ at V_{DC} = 3.3 V		
	1610	1.65 V	± 1.00 V	$1.65 \text{ V} \pm 1.00 \text{ V}$ at V_{DC} = 3.3 V		
	1515	1.50 V	± 1.50 V	1.50 V \pm 1.50 V at $V_{DC} = 3.3 \text{ V}$		
	1510	1.50 V	± 1.00 V	1.50 V	± 1.00 V at V _{DC} = 3.3 V	
V _C	input impedance of $V_{\rm C}$ min.				100 k0hm	
properties	V _C frequency tuning linearity max.			10 %		


For (*1) ~ (*9) please refer to definitions shown on the 2nd page of this datasheet

DIMENSIONS



TCXO JTS53H
1: NC
2, 3: NC
4: GND
5: output
6,7: NC
8: V _{cc}
pin connectio

VCTCXO JTS53HCV
1: VC
2, 3: NC
4: GND
5: output
6,7: NC
8: V_{CC}
in mm

ORDER INFORMATION

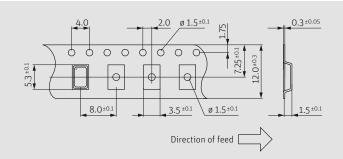
Example: 0 10.0-JTS53HCV-F-K-3.3-1510-1015-LF (Suffix LF = RoHS compliant / Pb free)

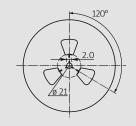
Oscillator JTS53HC(V) · Stratum 3 TCXO & VCTCXO

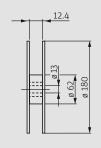
PHASE NOISE INFORMATION					
phase noise at f0 19.2 MHz, $V_{DC} = 3.3 \text{ V}$ @ +25 °C	at 10 Hz	-93 dBc/Hz typ.			
	at 100 Hz	-120 dBc/Hz typ.			
	at 1 KHz	-145 dBc/Hz typ.			
	at 10 KHz	-157 dBc/Hz typ.			
	at 100 KHz	-159 dBc/Hz typ.			

DEVELOPED FREQUENCIES					
all frequencies in MHz:	10.0	12.80	13.0	16.320	16.3840
	18.4320	19.20	19.440	20.0	25.0
	30.720	32.7680	38.880	40.0	50.0

- for best supply noise rejection, connect a capacitor of 100nF and a second capacitor of $10\mu F$ closely to the supply voltage pins
- a separate voltage supply rail ensures best phase noise
- keep digital or high frequency signals as far away from V_c pin as possible

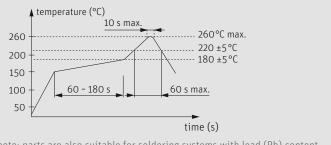

PACKAGING NOTE


- non-multiple packing units are only supplied taped / bulk
- moisture sensitivity: MSL 2


DEFINITIONS

- *1: Measured frequency observed with $T_A = +25$ °C and $C_1 = 15$ pF, at nominal V_{DC} and nominal center V_C (if applicable) within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: At specified reflow soldering profile, tested with $T_x = +25$ °C and $C_i = 15$ pF, at nominal V_{DC} and nominal center V_C (if applicable). At least 4 hours of static placement at room temperature is necessary after completion of 2 times reflow.
- Ta varied in the specified operating temperature range, frequency variation is normalized to the middle point of whole frequency excursion, at nominal $m V_{
 m D_C}$ and nominal center V $_{
 m C}$ (if applicable), and at nominal output load, temperature variable speed less than 2°C per minute.
- *4: Frequency variation if V_{DC} is varied by \pm 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_{A} =+25 °C and nominal load.
- *5: Frequency variation if the load is varied by ± 5% of nominal load, frequency variation is normalized to frequency observed at nominal V_{DC}, nominal center V_C (if applicable), T_A=+25 °C and nominal load.
- *6: The maximum 1st-year frequency deviation from the ex-factory status. $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), $T_A = +25$ °C and nominal load. Normally, the largest frequency deviation occurs within the 1st year.
- *7: The maximum frequency deviation within 24 hours in a steady state. The initial status acquired at T_A = +25 °C, at nominal V_{nc} , nominal center V_c (if applicable), nominal load and after 1h of continuous operation.
- *8: The maximum frequency deviation within 24 hours including temperature variation. The initial status acquired at $T_A = +25$ °C, at nominal V_{DC} , nominal center V_c (if applicable), nominal load and after 1h of continuous operation.
- *9: The maximum frequency deviation including stability vs. temperature, tolerance ex. factory, aging over 20 years, supply and load variation.

TAPING SPECIFICATION



in mm

REFLOW SOLDERING PROFILE

note: parts are also suitable for soldering systems with lead (Pb) content

MARKING

frequency / internal code (optional) dot / D / internal code

note: for more information please contact Jauch

