

Oscillator JTP53HC(V) · (VC)TCXO

Rh

Pb free

Conflict

- precision temperature compensated crystal oscillator, 5.0 x 3.2 mm
- frequency stability of ± 50 ppb available
- temperature range up to -40°C ~ +105°C
- JTP53HCV with frequency tuning option
- for a Stratum 3 compliant version refer to JTS53HC(V)

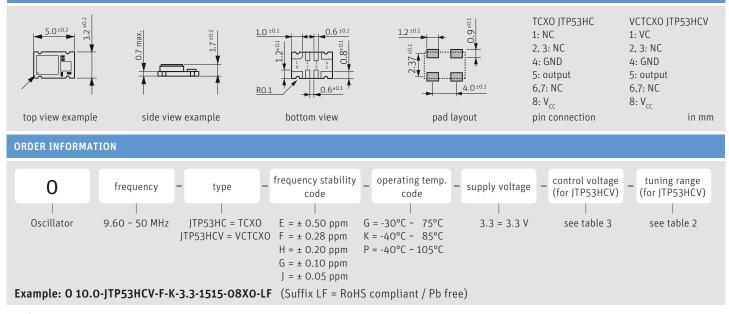
GENERAL DATA

requ.)		
)		
28 ppm)		
28 ppm)		
10.0 mA		
3.3 V (all ±5%)		
options)		
options)		

For (*1) ~ (*7) please refer to definitions shown on the 2nd page of this datasheet

TABLE 1: FREQUENCY STABILITY CODE

frequency stabili temperature code		E ± 0.5 ppm	F* ¹ ± 0.28 ppm	H* ¹ ± 0.20 ppm	G* ¹ ± 0.10 ppm	J* 1 ± 0.05 ppm
-30 °C ~ +75 °C	G	0	0	0	0	0
-40 °C ~ +85 °C	Κ	0	0	0	0	0
-40 °C ~ +105 °C	Ρ	0	0	0	0	\triangleright


O available ▷ ask if available

*1 frequency stability options F / H / G and J can be ordered as Stratum 3 compliant versions, see separate JTS53HC(V) datasheet

TABLE 2: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD							
V_{c} frequency tuning range	code	minimal	maximal				
of JTP53HCV	0407	± 4.0 ppm	± 7.0 ppm				
table shows examples,	08X0	± 8.0 ppm	undefined				
ask for more options	1015	± 10.0 ppm	± 15.0 ppm				
	20X0	± 20.0 ppm	undefined				
TABLE 3: VC CODING METHOD (EXAMPLES)							

17011 3. 10	CODING		,

V _c center voltage and	code	center of V _c	range of V _c				
$V_{\rm c}$ range	1616	1.65 V	± 1.65 V	1.65 V :	± 1.65 V at V _{DC} = 3.3 V		
	1610	1.65 V	± 1.00 V	1.65 V :	1.65 V \pm 1.00 V at V $_{\rm DC}$ = 3.3 V		
	1515	1.50 V	± 1.50 V	1.50 V	1.50 V ± 1.50 V at V _{DC} = 3.3 V 1.50 V ± 1.00 V at V _{DC} = 3.3 V		
	1510	1.50 V	± 1.00 V	1.50 V			
V _c	input impedance of V_c min.				100 k0hm		
properties	V _c frequency tuning linearity max.			10 %			

Oscillator JTP53HC(V) · Precision TCXO & VCTCXO

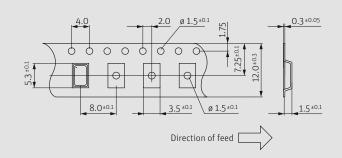
PHASE NOISE INFORMATION						
phase noise at f0 19.2 MHz, V _{DC} = 3.3 V @ +25 °C	at 10 Hz	-93 dBc/Hz typ.				
	at 100 Hz	-120 dBc/Hz typ.				
	at 1 KHz	-145 dBc/Hz typ.				
	at 10 KHz	-157 dBc/Hz typ.				
	at 100 KHz	-159 dBc/Hz typ.				

PACKAGING NOTE

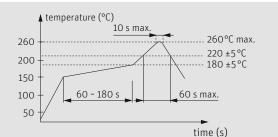
non-multiple packing units are only supplied taped / bulk
 moisture sensitivity: MSL2

DEVELOPED FREQUENCIES							
all frequencies in MHz:	10.0	12.8	13.0	16.320	16.3840		
	18.4320	19.20	19.440	20.0	25.0		
	30.720	32.7680	38.880	40.0	50.0		

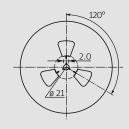
NOTE

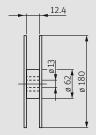

- for best supply noise rejection, connect a capacitor of 100nF and a second capacitor of $10\mu F$ closely to the supply voltage pins - a separate voltage supply rail ensures best phase noise

- keep digital or high frequency signals as far away from V_c pin as possible


DEFINITIONS

- *1: Measured frequency observed with $T_A = +25^{\circ}$ C and $C_L = 15$ pF, at nominal V_{DC} and nominal center V_C (if applicable) within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: At specified reflow soldering profile, tested with T_A=+25 °C and C_L=15pF, at nominal V_{DC} and nominal center V_C (if applicable).
 At least 4 hours of static placement at room temperature is necessary after completion of 2 times reflow.
- *3: T_A varied in the specified operating temperature range, frequency variation is normalized to the middle point of whole frequency excursion, at nominal V_{DC} and nominal center V_C (if applicable), and at nominal output load, temperature variable speed less than 2°C per minute.
- *4: Frequency variation if V_{DC} is varied by ± 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_{A} =+25 °C and nominal load.
- *5: Frequency variation if the load is varied by ± 5% of nominal load, frequency variation is normalized to frequency observed at nominal V_{DC}, nominal center V_c (if applicable), T_A=+25 °C and nominal load.
- *6: The maximum 1st-year frequency deviation from the ex-factory status. $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), $T_A = +25$ °C and nominal load. Normally, the largest frequency deviation occurs within the 1st year.
- *7: The maximum frequency deviation within 24 hours in a steady state. The initial status acquired at $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), nominal load and after 1h of continuous operation.


TAPING SPECIFICATION



REFLOW SOLDERING PROFILE

note: parts are also suitable for soldering systems with lead (Pb) content

in mm

MARKING

frequency / internal code (optional) dot / D / internal code

note: for more information please contact Jauch

